Abstract

The primary acoustic field of a standard seismic survey source array is described based on a calibrated dataset collected in the Gulf of Mexico. Three vertical array moorings were deployed to measure the full dynamic range and bandwidth of the acoustic field emitted by the compressed air source array. The designated source vessel followed a specified set of survey lines to provide a dataset with broad coverage of ranges and departure angles from the array. Acoustic metrics relevant to criteria associated with potential impacts on marine life are calculated from the recorded data. Sound pressure levels from direct arrivals exhibit large variability for a fixed distance between source and receiver; this indicates that the distance cannot be reliably used as a single parameter to derive meaningful exposure levels for a moving source array. The far-field acoustic metrics' variations with distance along the true acoustic path for a narrow angular bin are accurately predicted using a simplified model of the surface-affected source waveform, which is a function of the direction. The presented acoustic metrics can be used for benchmarking existing source/propagation models for predicting acoustic fields of seismic source arrays and developing simplified data-supported models for environmental impact assessments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call