Abstract

Incorporation of marine-derived nutrients (MDN) into freshwater food webs of southeastern Alaska was studied by measuring the natural abundance of nitrogen and carbon stable isotopes in biota from artificial and natural streams. Biofilm, aquatic macroinvertebrates (detritivores, shredders, and predators), and fish (coho salmon, Oncorhynchus kisutch, and cutthroat trout, Oncorhynchus clarki) were sampled from streams in which Pacific salmon (Oncorhynchus spp.) carcasses had been artificially placed or were present naturally. In the presence of carcasses, all trophic levels incorporated marine-derived nitrogen (range, 22–73% of total N) and carbon (range, 7–52% of total C). In general, chironomid midges assimilated more marine-derived nitrogen and carbon than did other consumers. The assimilation of MDN by aquatic organisms and subsequent isotopic enrichment (5–6‰ for 15N, 3–4‰ for 13C) were similar in experimentally and naturally carcass-enriched streams. For specific taxa, however, percent assimilation for marine nitrogen and carbon were often dissimilar, possibly because of fractionation or transfer inefficiencies. These results suggest that pathways of MDN incorporation into stream food webs include both consumption of salmon material by macroinvertebrates and fish and uptake of mineralized MDN by biofilm. Incorporation of MDN into multiple trophic levels demonstrates the ecological significance of annual returns of anadromous fishes for sustaining the productivity of freshwater food webs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.