Abstract
Abstract The spatial and temporal variability of the marine boundary layer (MBL) over the southeastern Pacific is studied using high-resolution radiosonde data from the VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx), lidar cloud measurements from the CALIOP instrument on the CALIPSO satellite, radio occultation (RO) data from the COSMIC satellites, and the ERA-Interim. The height of the MBL (MBLH) is estimated using three RO-derived parameters: the bending angle, refractivity, and water vapor pressure computed from the refractivity derived from a one-dimensional variational data inversion (1D-VAR) procedure. Two different diagnostic methods (minimum gradient and break point method) are compared. The results show that, although a negative bias in the refractivity exists as a result of superrefraction, the spatial and temporal variations of the MBLH determined from the RO observations are consistent with those from CALIOP and the radiosondes. The authors find that the minimum gradient in the RO bending angle gives the most accurate estimation of the MBL height.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.