Abstract

The potential antifungal activity of the marine alkaloid 2,2-bis(6-bromo-3-indolyl)ethylamine (URB 1204) was firstly assessed by minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) against different fungi. Then, URB 1204 was applied to a building material experimentally contaminated with selected fungi, in single and mixed species, for determining its potential application in preventing fungal growth. In addition, the over-time protection efficacy of URB 1204 was verified, subjecting the treated building surfaces to natural fungal contamination for 6weeks. URB 1204 showed different antifungal activity, with the lowest MIC value (16μg/mL) observed against Aspergillus flavus IDRA01, Cladosporium cladosporioides ATCC 16022 and Mucor circinelloides EHS03, and the highest MIC (128μg/mL) against the dermatophytes strains. The growth Alternaria alternata BC01, Penicillium citrinum LS1, and C. cladosporioides ATCC 16022 on building material treated with URB 1204 water solution (64μg/mL) was remarkably reduced with an effect time-dependent and related to the examined fungi. In terms of over-time efficacy, the samples treated with URB 1204 showed a delay of fungal growth comparable with that of a commercial antifungal product. These findings evidenced not only the ability of 2,2-bis(6-bromo-3-indolyl)ethylamine to limit the growth of different fungal species on building material but also to provide long-term protection against mold growth and proliferation, opening new perspectives for URB 1204 as preventive agent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call