Abstract

The contributions of marine and terrigenous organic carbon in modern organic sediments from the equatorial East Atlantic was quantified, based on the stable carbon isotope composition standardized for sea surface temperature and water depth. In our binary σ 13C mixing model, the marine end member −26 ∞ is redefined at 23°C and 0 m water depth and the terrigenous end member, independent of SST and water depth, at − 26 ∞. Terrigenous carbon fractions account for more than 60% of total organic carbon (TOC) on the shelf off East Liberia and the Ivory Coast and off Gabon. On the upper slope the land-derived fraction decreases in general to less than 20% of the high TOC concentrations, which can reach 3.5 wt%. The distribution of plant wax n-alkanes (C 27, C 29, C 31) and C:N ratios do not parallel those of land-derived organic carbon, but may be controlled largely by carbon degradation and aeolian/aquatic sorting. The ratio of n-alkanols vs n-alkanes (HPA index) varies with water depth in a nonlinear mode. Since both groups of compounds stem from the same source, plant waxes, it is proposed that the HPA index is controlled mainly by degradation and to a lesser extent by sorting prior to degradation. Enhanced n-alkane concentrations (up to 580 μg/gTOC) in the Gambia Basin and in the central Guinea Basin clearly reflect the influx of aeolian organic matter from northeasterly trades near and below the Inter Tropical Convergence Zone (ITCZ). The particle flux from marine plankton is traced by high concentrations of both dinosterol, long-chain unsaturated methyl and ethyl ketones (C 37-C 39), and alkandiols in marine organic matter. Whereas alkenones, synthetized by prymnesiophyte algae generally, reflect upwelling-related productivity off-shore, dinosterol, synthetized by dinoflagellates, is enriched in near-shore areas of high marine productivity linked to fluvial fertilization. All marine biomarker groups show a surprisingly low concentration below the equatorial high productivity belt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.