Abstract

The wooden breast (WB) condition in broiler breast meat negatively influences technological meat quality. However, it is unknown if the WB effects are uniform throughout the Pectoralis major. The objective of this study was to determine the effects of WB on the marination and cooking performance of the dorsal and ventral portions of broiler breast fillets. Sixty butterfly breast fillets were collected from the deboning line of a commercial plant and sorted into normal (no WB) and severe WB categories. Each fillet was horizontally portioned into dorsal and ventral halves. Portions from one side of each butterfly were used as non-marinated controls, while portions from the other side were vacuum-tumble marinated (16rpm, -0.6 atm, 4°C, 20min) with 20% (wt/wt) marinade to meat ratio. Marinade was formulated to target a final concentration of 0.75% salt and 0.45% sodium tripolyphosphate in the final product. Samples were cooked to 78°C in a combination oven. Marinade uptake and retention were lower (P < 0.001) in both the ventral and dorsal portions of the WB fillets. The dorsal portions had greater (P < 0.001) marinade uptake and retention than the ventral portions in both normal and WB fillets. For non-marinated samples, cook loss was greater (P < 0.05) in both the ventral and dorsal portions of WB fillets. In marinated samples, however, cook loss was similar between the dorsal portions of normal and WB fillets. Final cooked product yield was calculated based on pre-marination and post-cook weights. Non-marinated WB samples exhibited lower (P < 0.001) cooked product yields than normal samples in both portions. For marinated samples, cooked product yields were greater (P < 0.001) in the dorsal portions. Data demonstrated that the dorsal portion of the Pectoralis major more readily absorbs and retains marinade during vacuum tumbling and storage than the ventral portion. Although the WB condition negatively influenced marination and cooking performance in both fillet portions, the effects were less severe in the dorsal portion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call