Abstract
AbstractThe study of bias in language models is a growing area of work, however, both research and resources are focused on English. In this paper, we make a first approach focusing on gender bias in some freely available Spanish language models trained using popular deep neural networks, like BERT or RoBERTa. Some of these models are known for achieving state-of-the-art results on downstream tasks. These promising results have promoted such models’ integration in many real-world applications and production environments, which could be detrimental to people affected for those systems. This work proposes an evaluation framework to identify gender bias in masked language models, with explainability in mind to ease the interpretation of the evaluation results. We have evaluated 20 different models for Spanish, including some of the most popular pretrained ones in the research community. Our findings state that varying levels of gender bias are present across these models.This approach compares the adjectives proposed by the model for a set of templates. We classify the given adjectives into understandable categories and compute two new metrics from model predictions, one based on the internal state (probability) and the other one on the external state (rank). Those metrics are used to reveal biased models according to the given categories and quantify the degree of bias of the models under study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.