Abstract

BackgroundOligodendrocytes are responsible for myelin production in the central nervous system (CNS). Hypomyelination may slow saltatory nerve signal conduction and affect motor performance and behavior in adults. Gestational marginal zinc deficiency in rats significantly decreases proliferation of neural stem cells (NSCs) in the offspring brain. ObjectivesGiven that NSCs are precursors of oligodendrocytes, this study investigated if marginal zinc deficiency during early development in rats affects oligodendrogenesis in the offspring’s CNS. MethodsRat dams were fed an adequate (25 μg zinc/g diet) (C) or a marginal zinc diet (MZD) (10 μg zinc/g diet), from gestation day zero until postnatal day (P) 20, and subsequently all offspring was fed the control diet until P60. Oligodendrogenesis was evaluated in the offspring at P2, P5, P10, P20, and P60, by measuring parameters of oligodendrocyte progenitor cells (OPCs) proliferation, differentiation, maturation, and of myelination. ResultsThe expression of 1) proteins that regulate OPC proliferation (Shh, Sox10, Olig2); 2) OPC markers (NG2, PDGFRα); 3) myelin proteins (MBP, MAG, MOG, PLP) were lower in the brain cortex from MZD than C offspring at various stages in development. The amount of myelin after zinc replenishment continued to be low in the MZD young adult at P60. Accordingly, parameters of motor performance and behavior [grip strength, rotarod, elevated T-maze (ETM), and open-field tests] were impaired in the MZD offspring at P60. ConclusionsResults support the concept that maternal and early postnatal exposure to MZD affects oligodendrogenesis causing long-lasting effects on myelination and on motor performance in the young adult offspring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call