Abstract

Concentration fluctuations are always present in solutions; it has been noticed that, in chemical systems, they can lead to deviations from what is expected from mass-action equations. I recently described the class of the "marginally stable" chemical systems; namely, a system that have an infinity of stationary states forming a continuous curve, and I showed that they present such deviations, which appear as a drift along the stationary-state curve [Phys. Rev. Lett. 105, 058102 (2010)]. Here I describe various marginally stable chemical reaction networks, including replicating molecules, and I present numerical calculations based on reaction-diffusion master equations, showing that the thermodynamic fluctuations induce a drift. This drift can be interpreted in terms of evolution toward a more efficiently replicating system and is analogous to a Darwinian evolution. The concentration fluctuations observed during the drift are scale invariant. Relevance of this phenomenon to the origin of life is discussed. I propose that marginal stability is the mathematical property defining chemical reaction networks potentially involved in the origin of life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.