Abstract

The aim of this study is to compare the marginal seal and tensile bond strength (TBS) of prostheses fixed to enamel-dentin using different adhesive systems. Resin-composite inlays directly fabricated from Class V cavities of extracted human molars/premolars and mini-dumbbell-shaped specimens of bonded enamel-dentin were prepared for microleakage and tensile tests, respectively. Four adhesive systems were used: primerless-wet (1-1 etching for 10-, 30-, or 60-s, and 4-META/MMA-TBB), primer-moist (All-Bond2 + Duolink or Single-Bond2 + RelyX ARC), self-etch (AQ-Bond + Metafil FLO), and dry (Super-Bond C&B) bonding. Dye penetration distance and TBS data were recorded. Failure modes and characteristics of the tooth-resin interface were examined on the fractured specimens. All specimens in 10-, 30-, and 60-s etching primerless-wet, Super-Bond, and AQ-Bond had a microleakage-free tooth-resin interface. Primer-moist groups showed microleakage at the cementum/dentin-resin margin/interface. Significantly higher TBSs (p < 0.05) were recorded in primer-less-wet and Super-Bond groups with the consistent hybridized biopolymer layer after the chemical challenge and mixed failure in tooth structure, luting-resin, and at the PMMA-rod interface. There was no correlation between microleakage and TBS data (p = -0.148). A 1-3 µm hybrid layer created in the 10-60 s primerless-wet technique, producing complete micro-seal and higher tensile strength than enamel and cured 4-META/MMA-TBB, may enhance clinical performances like Super-Bond C&B, the sustainable luting resin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call