Abstract

Bulk-fill composites enable timesaving and less technical-sensitive application of restorations. This study investigated and compared the marginal integrity of classical and bulk-fill composite restorations in primary and permanent molars before and after thermo-mechanical loading (TML). Two Class II cavities were prepared in each of 20 primary and 20 permanent molars. The molars were randomised in four groups for each molar type. Groups 1 and 5 were restored with a high-viscous bulk-fill composite (Tetric PowerFill), groups 2 and 6 were restored with a flowable bulk-fill composite (Tetric PowerFlow), groups 3 and 7 were restored with a high-viscous classical composite (Tetric Prime), and groups 4 and 8 were restored with a flowable classical composite (Tetric EvoFlow). In permanent molars, the flowable composites were covered with a 2-mm layer of high-viscous composite (groups 6 and 8). The restorations were subjected to TML in a custom-made chewing machine (5–50 °C, 2 min dwelling time, × 1000; 400 ,000 loading cycles, 1.7 Hz, 49 N), and quantitative marginal analysis was conducted using scanning electron microscopy. Marginal integrity of each restoration was calculated as a percentage of continuous margins before and after TML. The tested high-viscous bulk-fill restoration showed similarly high marginal integrity in primary and permanent molars as the classical restoration. The tested flowable bulk-fill restoration showed the lowest marginal integrity compared to all other restorations after TML. In contrast to flowable bulk-fill restorations, high-viscous bulk-fill restorations show similar marginal integrity as classical hybrid composite restorations after TML, in both primary and permanent molars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.