Abstract

We report on a set of turbulent flow experiments of the Taylor type in which the fluid is contained between a rotating inner circular cylinder and a fixed concentric outer cylinder, focusing our attention on very large Taylor number values, i.e. \[ 10^3 \leqslant T/T_c \leqslant 10^5, \] where Tc is the critical value of the Taylor number T for onset of Taylor vortices. At such large values of T, the turbulent vortex flow structure is similar to the one observed when T – Tc is small and this structure is apparently insensitive to further increases in T. These flows are characterized by two widely separated length scales: the scale of the gap width which characterizes the Taylor vortex flow and a much smaller scale which is made visible by streaks in the form of a ‘herring-bone’-like pattern visible at the walls. These are conjectured to be Görtler vortices which arise as a result of centrifugal instability in the wall boundary layers. Ideas of marginal instability by which we postulate that both the Taylor and Görtler vortex structures are marginally unstable on their own scale seem to provide good quantitative agreement between predicted and observed Görtler vortex spacings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.