Abstract
Despite enormous scientific and technological progress in numerical weather and climate prediction, sea ice still remains unreliably predicted by models, both in short-term forecasting and climate projection applications. The total ice extent in both hemispheres is tied to the location of the ice edge, and consequently to what happens in the portion of the ice cover immediately adjacent to the open ocean that is called the marginal ice zone (MIZ). There is mounting evidence that processes occurring in the MIZ might play an important role in the polar climate of both hemispheres, yet some key physical processes are still missing in models. As sea ice models developed for climate studies are increasingly used for operational forecasting, the missing physics also impede short-term sea ice prediction skills. This paper is a mini-review that provides a historical perspective on how MIZ research has progressed since the 1970s, with a focus on the fundamental importance of the interactions between sea ice and surface gravity waves on sea ice dynamics. Completeness is not achieved, as the body of literature is huge, scattered and rapidly growing, but the intention is to inform future collaborative research efforts to improve our understanding and predictive capabilities of sea ice dynamics in the MIZ. This article is part of the theme issue 'Theory, modelling and observations of marginal ice zone dynamics: multidisciplinary perspectives and outlooks'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.