Abstract
We generalise Walley’s Marginal Extension Theorem to the case of any finite number of conditional lower previsions. Unlike the procedure of natural extension, our marginal extension always provides the smallest (most conservative) coherent extensions. We show that they can also be calculated as lower envelopes of marginal extensions of conditional linear (precise) previsions. Finally, we use our version of the theorem to study the so-called forward irrelevant product and forward irrelevant natural extension of a number of marginal lower previsions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.