Abstract

Decision makers facing emission-reduction targets need to decide which abatement measures to implement, and in which order. This article investigates how marginal abatement cost (MAC) curves can inform such a decision. We re-analyse a MAC curve built for Brazil by 2030, and show that misinterpreting MAC curves as abatement supply curves can lead to suboptimal strategies. It would lead to (1) under-investment in expensive, long-to-implement and large-potential options, such as clean transportation infrastructure, and (2) over-investment in cheap but limited-potential options such as energy-efficiency improvement in refineries. To mitigate this issue, the article proposes a new graphical representation of MAC curves that explicitly renders the time required to implement each measure.Policy relevanceIn addition to the cost and potential of available options, designing optimal short-term policies requires information on long-term targets (e.g. halving emissions by 2050) and on the speed at which measures can deliver emission reductions. Mitigation policies are thus best investigated in a dynamic framework, building on sector-scale pathways to long-term targets. Climate policies should seek both quantity and quality of abatement, by combining two approaches: a ‘synergy approach’ that focuses on the cheapest mitigation options and maximizes co-benefits, and an ‘urgency approach’ that starts from a long-term objective and works backward to identify actions that need to be implemented early. Accordingly, sector-specific policies may be used (1) to remove implementation barriers on negative- and low-cost options and (2) to ensure short-term targets are met with abatement of sufficient quality. Indeed, such policies can avoid under-investment in the long-to-implement options required to reach long-term targets, which are otherwise difficult to enforce.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.