Abstract

To evaluate the effect of camera flash position on the measurement of photographic margin reflex distances (MRD). Subjects without any ophthalmic disease were prospectively enrolled after institutional review board approval. Clinical measurements of MRD1 and interpalpebral fissure were obtained. Photographs were then taken with a digital single lens reflex with built-in pop-up flash (dSLR-pop), a dSLR with lens-mounted ring flash (dSLR-ring), a point-and-shoot camera, and a smartphone, each in 4 positions: with the camera upright, rotated 90°, 180°, and 270°. The images were analyzed using ImageJ software to measure MRD1, interpalpebral fissure, horizontal white-to-white, and distance from nasal limbus to the corneal light reflex. Thirty-two eyes of 16 subjects were included (ages 27-65). When using the dSLR-ring, point-and-shoot, and smartphone, the difference between clinical and photographic MRD1 did not reach statistical significance. There was, however, a statistically significant difference in the upright position with dSLR-pop (mean difference 0.703 mm, σ = 0.984 mm, p = 0.0008). For dSLR-pop, photographic MRD1 in upright versus inverted position differed significantly (mean difference -0.562 mm, σ =0.348 mm, p < 0.0001). Photographic MRD1 between dSLR-pop and dSLR-ring showed significant difference in upright position (mean difference -0.572 mm, σ = 0.701 mm, p = 0.0002). There were no statistically significant differences between clinical and photographic interpalpebral fissure, and among white-to-white and nasal limbus to light reflex measurements in any position in all 4 cameras. When using photographs for measurement of MRD1, cameras with a near-coaxial light source and aperture have values that are most similar to clinical measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.