Abstract

Mitochondrial dysfunction is increasingly considered as the center of pathophysiology in sepsis-induced cardiac dysfunction. Maresin conjugates in tissue regeneration 1 (MCTR1) is a newly identified specialized pro-resolving mediator (SPM) and has been shown to accelerate tissue regeneration and exert positive inotropic effects. Our present study aims to investigate the effect of MCTR1 on lipopolysaccharide (LPS)-induced cardiac dysfunction and explore its potential mechanisms. Mice were treated with LPS to generate LPS-induced cardiac dysfunction. H9C2 cells were used to verify the effect of MCTR1 in vitro. LPS injection triggered cardiac dysfunction and increased mRNA expression of inflammation cytokines, which were significantly attenuated by post-treatment of MCTR1. Mechanistically, we found that MCTR1 ameliorated LPS-mediated reduction of protein expression of mitochondrial biogenesis factors and silent information regulator 1 (Sirt1), accompanied by enhancement of mitochondrial biogenesis and function. Besides, Sirt1 inhibitor EX527 inhibited effects of MCTR1 on mitochondrial biogenesis and function, blunted the protective effect of MCTR1 on cardiac function, and prevented enhancement of survival rate. MCTR1 protected against LPS-induced cardiac dysfunction through improvement of mitochondrial biogenesis and function in a Sirt1-dependent manner. Our studies showed that MCTR1 might represent a novel therapeutic strategy for cardiac dysfunction caused by sepsis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.