Abstract

Despite the fact that the causative agent of Marek's disease was described more than 30 years ago, and that subsequently many classical biological studies have been carried out on the Marek's disease virus (MDV), detailed analysis of its gene functions has been hampered by lack of suitable research tools. Information on the primary structure of MDV-1 and its serologically related viruses, MDV-2 and herpesvirus of turkeys, is now available. This review focuses on the introduction of the modern and highly efficient technology of bacterial artificial chromosome (BAC) cloning and mutagenesis for rapid manipulation of the MDV genome, with the aim of studying the functions of its genes and non-coding regions. Constructed MDV BACs carry the complete genome of MDV that can be multiplied in Escherichia coli and manipulated using the tools provided by bacterial genetics. The novel approach of MDV DNA mutagenesis using BAC technology will be explained by examples, and we will discuss gene functions in comparison with their counterparts in other herpesviruses. In addition, we have shown that MDV BAC DNA can be used as a polynucleotide vaccine to protect against Marek's disease, thus opening a new chapter in strategies for control of this disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call