Abstract
We have shown previously that myristoylated alanine-rich C kinase substrate (MARCKS) is a key regulatory molecule in the process of mucin secretion by airway epithelial cells, and that part of the secretory mechanism involves intracellular associations of MARCKS with specific chaperones: heat shock protein 70 (Hsp70) and cysteine string protein (CSP). Here, we report that MARCKS also interacts with unconventional myosin isoforms within these cells, and further molecular interactions between MARCKS and these chaperones/cytoskeletal proteins are elucidated. Primary human bronchial epithelial cells and the HBE1 cell line both expressed myosin V and VI proteins, and both MARCKS and CSP were shown to bind to myosin V, specifically Va and Vc. This binding was enhanced by exposing the cells to phorbol-12-myristate-13-acetate, an activator of protein kinase C and stimulator of mucin secretion. Binding of MARCKS, Hsp70, and CSP was further investigated by His-tagged pull down assays of purified recombinant proteins and multiple transfections of HBE1 cells with fusion proteins (MARCKS-HA; Flag-Hsp70; c-Myc-CSP) and immunoprecipitation. The results showed that MARCKS binds directly to Hsp70, and that Hsp70 binds directly to CSP, but that MARCKS binding to CSP appears to require the presence of Hsp70. Interrelated binding(s) of MARCKS, chaperones, and unconventional myosin isoforms may be integral to the mucin secretion process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Respiratory Cell and Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.