Abstract
We investigate Marcinkiewicz–Zygmund type inequalities for multivariate polynomials on various compact domains in $${\mathbb{R}^d}$$ . These inequalities provide a basic tool for the discretization of the L p norm and are widely used in the study of the convergence properties of Fourier series, interpolation processes and orthogonal expansions. Recently Marcinkiewicz–Zygmund type inequalities were verified for univariate polynomials for the general class of doubling weights, and for multivariate polynomials on the ball and sphere with doubling weights. The main goal of the present paper is to extend these considerations to more general multidimensional domains, which in particular include polytopes, cones, spherical sectors, toruses, etc. Our approach will rely on application of various polynomial inequalities, such as Bernstein–Markov, Schur and Videnskii type estimates, and also using symmetry and rotation in order to generate results on new domains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.