Abstract
We consider scattered data approximation problems on SO(3). To this end, we construct a new operator for polynomial approximation on the rotation group. This operator reproduces Wigner-D functions up to a given degree and has uniformly bounded L p -operator norm for all 1 ≤ p ≤ ∞. The operator provides a polynomial approximation with the same approximation degree of the best polynomial approximation. Moreover, the operator together with a Markov type inequality for Wigner-D functions enables us to derive scattered data L p -Marcinkiewicz–Zygmund inequalities for these functions for all 1 ≤ p ≤ ∞. As a major application of such inequalities, we consider the stability of the weighted least squares approximation problem on SO(3).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Numerical Functional Analysis and Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.