Abstract

Abstract The Marcinkiewicz strong law, limn→∞(1 / n1/p)∑k=1n(Dk - D) = 0 almost surely with p ∈ (1, 2), is studied for outer products Dk = {XkX̅kT}, where {Xk} and {X̅k} are both two-sided (multivariate) linear processes (with coefficient matrices (Cl), (C̅l) and independent and identically distributed zero-mean innovations {Ξ} and {Ξ̅}). Matrix sequences Cl and C ̅l can decay slowly enough (as |l| → ∞) that {Xk,X ̅k} have long-range dependence, while {Dk} can have heavy tails. In particular, the heavy-tail and long-range-dependence phenomena for {Dk} are handled simultaneously and a new decoupling property is proved that shows the convergence rate is determined by the worst of the heavy tails or the long-range dependence, but not the combination. The main result is applied to obtain a Marcinkiewicz strong law of large numbers for stochastic approximation, nonlinear function forms, and autocovariances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.