Abstract
Volumetric data abounds in medical imaging and other fields. With the improved imaging quality and the increased resolution, volumetric datasets are getting so large that the existing tools have become inadequate for processing and analyzing the data. Here we consider the problem of computing tetrahedral meshes to represent large volumetric datasets with labeled multiple materials, which are often encountered in medical imaging or microscopy optical slice tomography. Such tetrahedral meshes are a more compact and expressive geometric representation so are in demand for efficient visualization and simulation of the data, which are impossible if the original large volumetric data are used directly due to the large memory requirement. Existing methods for meshing volumetric data are not scalable for handling large datasets due to their sheer demand on excessively large run-time memory or failure to produce a tet-mesh that preserves the multi-material structure of the original volumetric data. In this article we propose a novel approach, called Marching Windows, that uses a moving window and a disk-swap strategy to reduce the run-time memory footprint, devise a new scheme that guarantees to preserve the topological structure of the original dataset, and adopt an error-guided optimization technique to improve both geometric approximation error and mesh quality. Extensive experiments show that our method is capable of processing very large volumetric datasets beyond the capability of the existing methods and producing tetrahedral meshes of high quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on visualization and computer graphics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.