Abstract

Mylonitization of medium-grade marbles in the Bancroft shear zone, Ontario, Canada, is characterized by decreasing grain-size of both calcite and graphite, and a variety of textures. Calcite grain-sizes vary from several millimeters in the protolith, to 50–200 μm in mylonite, to <30 μm in ultramylonite. Corresponding calcite grain shapes are equant in the protolith, elongate in protomylonite (first-developed dimensional preferred orientation), equant in coarse mylonite, elongate in fine mylonite (second-developed dimensional preferred orientation) and generally equant in ultramylonite, which suggests that external energy (applied stress) that tends to elongate grains competed with internal energy sources (e.g. distortional strain) that favor equant shapes. Graphite grain-size changes from several millimeters to centimeters in the protolith to submicroscopic in ultramylonite. In the mylonitic stages, graphite is present as dark bands, while in the ultramylonitic stage it is preserved as a fine coating on calcite grains. Based on textural evidence, twinning (exponential creep; regime I), dynamic recrystallization (power law creep; regime II) and possibly grain boundary sliding superplasticity (regime III) are considered the dominant deformation mechanisms with increasing intensity of mylonitization; their activity is largely controlled by calcite grain-size. Calcite grain-size reduction occurred predominantly by the process of rotation recrystallization during the early stages of mylonitization, as indicated by the occurrence of core and mantle or mortar structures, and by the grain-size of subgrains and recrystallized grains. Grain elongation in S- C structures indicates the activity of migration recrystallization; these structures are not the result of flattening of originally equant grains. Differential stress estimates in coarse mylonites and ultramylonites, based on recrystallized grain-size, are 2–5 and 14–38 MPa, respectively. Initial grain-size reduction of graphite occurred by progressive separation along basal planes, analogous to mica fish formation in quartzo-feldspathic mylonites. Calcite-graphite thermometry on mylonitic and ultramylonitic samples shows that the metamorphic conditions during mylonitization were 475 ± 50°C, which, combined with a differential stress value of 26 MPa, gives a strain rate of 1.2 x 10 −10 s −1 based on constitutive equations; corresponding displacement rates are <38 mm yr −1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.