Abstract

Marangoni flow plays an important role in the heat and mass transport for highly value-added high-temperature processes, such as crystal growth, welding, casting, and electron beam melting. For silicon single crystal growth, the effect of the oscillatory Marangoni flow on the introduction of growth striation was discussed by Chen and Wilcox for the first time in 1972 [1]. The existence of the Marangoni flow within molten silicon was proved through microgravity experiments in space on board a sounding rocket in 1983 by Eyer et al. [2], who found formation of growth striation in single crystals even under microgravity, where buoyancy-driven flow was suppressed. To explain the Marangoni effect at the melt surface, surface tension is essential. Keene [3] discussed the oxygen contamination in the surface tension measurement and recommended the use of a levitation technique, which is a containerless process and assures the contamination-free condition from measurement devices. It is well known that flow direction in the weld pool is dependent on surface contamination and that this is related to weldability [4, 5]. Flow direction is controlled by the temperature coefficient of surface tension for molten steels; contaminants are oxygen and sulfur. In the electron beam button melting system, the Marangoni flow is dominant because of intense heating at the melt surface [5]. In this chapter, surface tension of high temperature metallic melts is discussed from the viewpoint of the Marangoni effect in the value-added high temperature processes, particularly from the viewpoint of the effect of oxygen and sulfur. Theoretical treatment for oxygen adsorption is also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call