Abstract

As a challenging problem in the Multi-Agent Reinforcement Learning (MARL) community, the cooperative task has received extensive attention in recent years. Most current MARL algorithms use the centralized training distributed execution approach, which cannot effectively handle the relationship between local and global information during training. Meanwhile, many algorithms mainly focus on the collaborative tasks with a fixed number of agents without considering how to cooperate with the existing agents when the new agents enter in the environment. To address the above problems, we propose a Multi-agent Recurrent Residual Mix model (MAR2MIX). Firstly, we utilize the dynamic masking techniques to ensure that different multi-agent algorithms can operate in dynamic environments. Secondly, through the cyclic residual mixture network, we can efficiently extract features in the dynamic environment and achieve task collaboration while ensuring effective information transfer between global and local agents. We evaluate the MAR2MIX model in both non-dynamic and dynamic environments. The results show that our model can learn faster than other benchmark models. The training model is more stable and generalized, which can deal with the problem of agents joining in dynamic environments well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.