Abstract

BackgroundMiniature inverted-repeat transposable elements (MITEs) are short, nonautonomous DNA elements flanked by subterminal or terminal inverted repeats (TIRs) with no coding capacity. MITEs were originally recognized as important components of plant genomes, where they can attain extremely high copy numbers, and are also found in several animal genomes, including mosquitoes, fish and humans. So far, few MITEs have been described in Drosophila.ResultsHerein we describe the distribution and evolution of Mar, a MITE family of hAT transposons, in Drosophilidae species. In silico searches and PCR screening showed that Mar distribution is restricted to the willistoni subgroup of the Drosophila species, and a phylogenetic analysis of Mar indicates that this element may have originated prior to the diversification of these species. Most of the Mar copies in D. willistoni present conserved target site duplications and TIRs, indicating recent mobilization of these sequences. We also identified relic copies of potentially full-length Mar transposon in D. tropicalis and D. willistoni. The phylogenetic relationship among transposases from the putative full-length Mar and other hAT superfamily elements revealed that Mar is placed into the recently determined Buster group of hAT transposons.ConclusionOn the basis of the obtained data, we can suggest that the origin of these Mar MITEs occurred before the subgroup willistoni speciation, which started about 5.7 Mya. The Mar relic transposase existence indicates that these MITEs originated by internal deletions and suggests that the full-length transposon was recently functional in D. willistoni, promoting Mar MITEs mobilization.

Highlights

  • Miniature inverted-repeat transposable elements (MITEs) are short, nonautonomous DNA elements flanked by subterminal or terminal inverted repeats (TIRs) with no coding capacity

  • Within the class II transposons, there is a special group of nonautonomous sequences, called miniature inverted-repeat transposable elements (MITEs), which can be present in high number of copies in some genomes

  • We identified relic copies of a fulllength Mar in D. tropicalis and D. willistoni, suggesting that the origin of the Mar MITEs occurred by internal deletion of an autonomous copy followed by amplification

Read more

Summary

Introduction

Miniature inverted-repeat transposable elements (MITEs) are short, nonautonomous DNA elements flanked by subterminal or terminal inverted repeats (TIRs) with no coding capacity. TEs can be divided into two classes based on their mechanism of transposition: class I comprises the retrotransposons that transpose through an RNA intermediate, and Within the class II transposons, there is a special group of nonautonomous sequences, called miniature inverted-repeat transposable elements (MITEs), which can be present in high number of copies in some genomes. They are characterized by short sequences with no coding capacity, contain conserved TIRs, are flanked by TSDs produced by the insertion and probably originated from a subset of autonomous DNA transposons [9,10,11,12]. They were first discovered in plants, but they have been found in several animal genomes, including Caenorhabditis elegans, Drosophila, mosquitoes, fish and humans [13,14]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.