Abstract

The optical differential pathlength factor (DPF) is an important parameter for physiological measurement using near infrared spectroscopy, but for the human adult head it has been available only for the forehead. Here we report measured DPF results for the forehead, somatosensory motor and occipital regions from measurements on 11 adult volunteers using a time-resolved optical imaging system. The optode separation was about 30 mm and the wavelengths used were 759 nm, 799 nm and 834 nm. Measured DPFs were 7.25 for the central forehead and 6.25 for the temple region at 799 nm. For the central somatosensory and occipital areas (10 mm above the inion), DPFs at 799 nm are 7.5 and 8.75, respectively. Less than 10% decreases of DPF for all these regions were observed when the wavelength increased from 759 nm to 834 nm. To compare these DPF maps with the anatomical structure of the head, a Monte Carlo simulation was carried out to calculate DPF for these regions by using a two-layered semi-infinite model and assuming the thickness of the upper layer to be the sum of the thicknesses of scalp and skull, which was measured from MRI images of a subject's head. The DPF data will be useful for quantitative monitoring of the haemodynamic changes occurring in adult heads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.