Abstract

This paper presents a quantitative radiomics feature model for performing prostate cancer detection using multiparametric MRI (mpMRI). It incorporates a novel tumor candidate identification algorithm to efficiently and thoroughly identify the regions of concern and constructs a comprehensive radiomics feature model to detect tumorous regions. In contrast to conventional automated classification schemes, this radiomics-based feature model aims to ground its decisions in a way that can be interpreted and understood by the diagnostician. This is done by grouping features into high-level feature categories which are already used by radiologists to diagnose prostate cancer: Morphology, Asymmetry, Physiology, and Size (MAPS), using biomarkers inspired by the PI-RADS guidelines for performing structured reporting on prostate MRI. Clinical mpMRI data were collected from 13 men with histology-confirmed prostate cancer and labeled by an experienced radiologist. These annotated data were used to train classifiers using the proposed radiomics-driven feature model in order to evaluate the classification performance. The preliminary experimental results indicated that the proposed model outperformed each of its constituent feature groups as well as a comparable conventional mpMRI feature model. A further validation of the proposed algorithm will be conducted using a larger dataset as future work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.