Abstract
The growth of social networks and affordability of various sensing devices has lead to a huge increase of both human and non-human entities that are interconnected via various networks, mostly Internet. All of these entities generate large amounts of various data, and BI analysts have realized that such data contain knowledge that can no longer be ignored. However, traditional support for extraction of knowledge from mostly transactional data - data warehouse - can no longer cope with large amounts of fast incoming various, unstructured data - big data - and is facing a paradigm shift. Big data analytics has become a very active research area in the last few years, as well as the research of underlying data organization that would enhance it, which could be addressed as big data warehousing. One research direction is enhancing data warehouse with new paradigms that have proven to be successful at handling big data. Most popular of them is the MapReduce paradigm. This paper provides an overview on research and attempts to incorporate MapReduce with data warehouse in order to empower it for handling of big data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.