Abstract

A graphical model represents the data distribution of a data generating process and inherently captures its feature relationships. This stochastic model can be used to perform inference, to calculate posterior probabilities, in various applications such as classification. Exact inference algorithms are known to be intractable on large networks due to exponential time and space complexity. Approximate inference algorithms are instead widely used in practice to overcome this constraint, with a trade off in accuracy. Stochastic sampling is one such method where an approximate probability distribution is empirically evaluated using various sampling techniques. However, these algorithms may still suffer from scalability issues on large and complex networks. To address this challenge, we have designed and implemented several MapReduce based distributed versions of a specific type of approximate inference algorithm called Adaptive Importance Sampling (AIS). We compare and evaluate the proposed approaches using benchmark networks. Experimental result shows that our approach achieves significant scaleup and speedup compared to the sequential algorithm, while achieving similar accuracy asymptotically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.