Abstract

Given a set of facility objects and a set of client objects, where each client is served by her nearest facility and each facility is constrained by a service capacity, we study how to find all the locations on which if a new facility with a given capacity is established, the number of served clients is maximized (in other words, the utility of the facilities is maximized). This problem is intrinsically difficult. An existing algorithm with an exponential complexity is not scalable and cannot handle this problem on large data sets. Therefore, we propose to solve the problem through parallel computing, in particular using MapReduce. We propose an arc-based method to divide the search space into disjoint partitions. For load balancing, we propose a dynamic strategy to assign partitions to reducers so that the estimated load difference is within a threshold. We conduct extensive experiments using both real and synthetic data sets of large sizes. The results demonstrate the efficiency and scalability of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.