Abstract
We give a positive answer to the Aleksandrov problem in n-normed spaces under the surjectivity assumption. Namely, we show that every surjective mapping preserving n-distance one is affine, and thus is an n-isometry. This is the first time the Aleksandrov problem is solved in n-normed spaces with only the surjectivity assumption even in the usual case $$n=2$$ . Finally, when the target space is n-strictly convex, we prove that every mapping preserving two n-distances with an integer ratio is an affine n-isometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.