Abstract

We study mappings f = ( f1, ..., fn) : Ω → Rn in the Sobolev space W loc (Ω,R n), where Ω is a connected, open subset of Rn with n ≥ 2. Thus, for almost every x ∈ Ω, we can speak of the linear transformation D f(x) : Rn → Rn, called differential of f at x. Its norm is defined by |D f(x)| = sup{|D f(x)h| : h ∈ Sn−1}. We shall often identify D f(x) with its matrix, and denote by J(x, f ) = det D f(x) the Jacobian determinant. Thus, using the language of differential forms, we can write

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.