Abstract

Assuming that there exists in the unit interval [0, 1] a coanalytic set of continuum cardinality without any perfect subset, we show the existence of a scattered compact Hausdorff spaceK with the following properties: (i) For each continuous mapf on a Baire spaceB into (C(K), pointwise), the set of points of continuity of the mapf: B → (C(K), norm) is a denseG δ subset ofB, and (ii)C(K) does not admit a Kadec norm that is equivalent to the supremum norm. This answers the question of Deville, Godefroy and Haydon under the set theoretic assumption stated above.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.