Abstract

ABSTRACT Crop planting area mapping is essential for crop phenology monitoring, yield prediction, and disaster prevention. In this study, a winter wheat identification method combining Markov Random Field and Spectral Similarity Measure (MRF-SSM) is proposed by using Sentinel-1 A time-series images. It is found that compared with VH polarization, the backscattering coefficient of winter wheat at VV polarization fluctuates more at all growth stages and is used for winter wheat mapping. The result shows that the precision of mapping winter wheat using the MRF-SSM is 89.62% which is higher than using the support vector machine (SVM) and random forest (RF) methods. Because winter wheat near towns can be accurately identified using MRF-SSM methods. Moreover, the MRF-SSM method has the advantages of fewer winter wheat samples and less computation time. Therefore, time-series Sentinel-1A images with MRF-SSM have great potential for mapping winter wheat or other crops.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.