Abstract
Abstract The combination of neuroimaging and targeted neuromodulation is a crucial tool to gain a deeper understanding of neural networks at a circuit level. Infrared neurostimulation (INS) is a promising optical modality that allows to evoke neuronal activity with high spatial resolution without need for the introduction of exogenous substances in the brain. Here, we report the use of whole-brain functional [18F]fluorodeoxyglucose positron emission tomography (FDG-PET) imaging during INS in the dorsal striatum, performed using a multifunctional soft neural probe. We demonstrate the possibility to identify multi-circuit connection patterns in both cortical and subcortical brain regions within a single scan. By using a bolus plus infusion FDG-PET scanning protocol, we were able to observe the metabolic rate evolution in these regions during the experiments and correlate its variation with the onset of the INS stimulus. Due to the focality of INS and the large amount of viable molecular targets for positron emission tomography (PET), this novel approach to simultaneous imaging and stimulation is highly versatile. This pilot study can pave the way to further understand the brain connectivity on a global scale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.