Abstract

ABSTRACTFocusing on the semi-arid and highly disturbed landscape of San Clemente Island (SCI), California, we test the effectiveness of incorporating a hierarchical object-based image analysis (OBIA) approach with high-spatial resolution imagery and canopy height surfaces derived from light detection and ranging (lidar) data for mapping vegetation communities. The hierarchical approach entailed segmentation and classification of fine-scale patches of vegetation growth forms and bare ground, with shrub species identified, and a coarser-scale segmentation and classification to generate vegetation community maps. Such maps were generated for two areas of interest on SCI, with and without vegetation canopy height data as input, primarily to determine the effectiveness of such structural data on mapping accuracy. Overall accuracy is highest for the vegetation community map derived by integrating airborne visible and near-infrared imagery having very high spatial resolution with the lidar-derived canopy height data. The results demonstrate the utility of the hierarchical OBIA approach for mapping vegetation with very high spatial resolution imagery, and emphasizes the advantage of both multi-scale analysis and digital surface data for accurately mapping vegetation communities within highly disturbed landscapes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.