Abstract
Twisted light carrying orbital angular momentum (OAM) provides an additional degree of freedom for modern optics and an emerging resource for both classical and quantum information technologies. Its inherently infinite dimensions can potentially be exploited by using mode multiplexing to enhance data capacity for sustaining the unprecedented growth in big data and internet traffic and can be encoded to build large-scale quantum computing machines in high-dimensional Hilbert space. While the emission of twisted light from the surface of integrated devices to free space has been widely investigated, the transmission and processing inside a photonic chip remain to be addressed. Here, we present the first laser-direct-written waveguide being capable of supporting OAM modes and experimentally demonstrate a faithful mapping of twisted light into and out of a photonic chip. The states OAM_{0}, OAM_{-1}, OAM_{+1}, and their superpositions can transmit through the photonic chip with a total efficiency up to 60% with minimal crosstalk. In addition, we present the transmission of quantum twisted light states of single photons and measure the output states with single-photon imaging. Our results may add OAM as a new degree of freedom to be transmitted and manipulated in a photonic chip for high-capacity communication and high-dimensional quantum information processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.