Abstract

Semiconductor moiré superlattices have been shown to host a wide array of interaction-driven ground states. However, twisted homobilayers have been difficult to study in the limit of large moiré wavelengths, where interactions are most dominant. In this study, we conducted local electronic compressibility measurements of twisted bilayer WSe2 (tWSe2) at small twist angles. We demonstrated multiple topological bands that host a series of Chern insulators at zero magnetic field near a "magic angle" around 1.23°. Using a locally applied electric field, we induced a topological quantum-phase transition at one hole per moiré unit cell. Our work establishes the topological phase diagram of a generalized Kane-Mele-Hubbard model in tWSe2, demonstrating a tunable platform for strongly correlated topological phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call