Abstract

Remote sensing of forest vertical structure is possible with lidar data, but lidar is not widely available. Here we map tropical dry forest height (RMSE = 0.9 m, R 2 = 0.84, range 0.6–7 m), and we map foliage height profiles, with a time series of Landsat and Advanced Land Imager (ALI) imagery on the island of Eleuthera, The Bahamas, substituting time for vertical canopy space. We also simultaneously map forest disturbance type and age. We map these variables in the context of avian habitat studies, particularly for wintering habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler ( Dendroica kirtlandii). We also illustrate relationships between forest vertical structure, disturbance type and counts of forage species important to the Kirtland's Warbler. The ALI imagery and the Landsat time series are both critical to the result for forest height, which the strong relationship of forest height with disturbance type and age facilitates. Also unique to this study is that seven of the eight image time steps are cloud-cleared images: mosaics of the clear parts of several cloudy scenes. We created each cloud-cleared image, including a virtually seamless ALI image mosaic, with regression tree normalization. We also illustrate how viewing time series imagery as red–green–blue composites of tasseled cap wetness ( RGB wetness composites) aids reference data collection for classifying tropical forest disturbance type and age. Our results strongly support current Landsat Program production of co-registered imagery, and they emphasize the value of seamless time series of cloud-cleared imagery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.