Abstract

Chemical and enzymatic footprinting experiments have made it possible to identify protein binding sites in DNA and RNA, and to localize structural differences within nucleic acids to a resolution of a single base pair. We show here that by combining three reagents, Fe(II).EDTA2-, Fe(II).EDDA and Fe2+, differential maps of sites in RNA that vary in their local conformation and/or charge can be constructed. Comparison of profiles with respect to controls in the absence of a counterion such as Mg2+ allows analysis of sites responsive to tertiary structure. A single site that is labile to metals such as Pb2+ exists in tRNA(Phe) and a number of other tRNA's; this site is hyper-reactive to Fe(II), but not to the other probes. Scission induced by the neutral complex, Fe(II).EDDA, offers the most general measure of surface accessibility, since its distribution about the target molecule is insensitive to charge. Enhanced cleavage by Fe(II) relative to the other agents is detected at several adjacent sites in 5S RNA, consistent with conformational mobility. Protection at a series of positions in the arm formed by loops E and D with helix IV suggests further that at low temperature this arm interacts with loop A and helix I.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call