Abstract

Bacterial genomes encode numerous transcription factors, DNA-binding proteins that regulate transcription initiation. Identifying the regulatory targets of transcription factors is a major challenge of systems biology. Here I describe the use of two genome-scale approaches, ChIP-seq and RNA-seq, that are used to map transcription factor regulons. ChIP-seq maps the association of transcription factors with DNA, and RNA-seq determines changes in RNA levels associated with transcription factor perturbation. I discuss the strengths and weaknesses of these and related approaches, and I describe how ChIP-seq and RNA-seq can be combined to map individual transcription factor regulons and entire regulatory networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.