Abstract
Significant advances have recently been made in modeling chaotic systems with the reservoir computing approach, especially for prediction. We find that although state prediction of the trained reservoir computer will gradually deviate from the actual trajectory of the original system, the associated geometric features remain invariant. Specifically, we show that the typical geometric metrics including the correlation dimension, the multiscale entropy, and the memory effect are nearly identical between the trained reservoir computer and its learned chaotic systems. We further demonstrate this fact on a broad range of chaotic systems ranging from discrete and continuous chaotic systems to hyperchaotic systems. Our findings suggest that the successfully reservoir computer may be topologically conjugate to an observed dynamical system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.