Abstract

The cognition of thermal comfort plays a pivotal role in human life and activities. Recognizing thermal comfort based on climatic parameters is substantially significant. The main objective of the present study is to map thermal comfort using statistics from 43 meteorological stations, from 1970 to 2013. Initially, according to temperature and relative humidity, annual and seasonal thermal comfort conditions were mapped, and later bioclimatic human thermal comfort conditions in line with spatial factors were zoned based on bioclimatic indexes of Temperature Humidity Index (THI), effective temperature (ET) and Relative Strain Index (RSI). Among geostatistical methods, empirical Bayesian kriging (EBK) method with less RSME is more efficient. The annual distribution of temperature changes according to spatial factors of rugged topography and elevation, and latitude affects relative humidity. Thermal comfort in the northern and western half of Iran is higher than the southern and eastern areas of the country. Spatial factors of latitude and altitude reduce bioclimatic uniformity and create small areas with or without thermal comfort conditions. Bioclimatic indicators based on air temperature and relative humidity range of bioclimatic zones show. The results of ET and THI divide the whole country into six zones, from lack of thermal comfort to having thermal comfort conditions. Areas of southern strip as well as central and southeastern parts of the country do not have any human thermal comfort conditions in most of the year.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call