Abstract

Imaging targeting vesicular monoamine transporter (VMAT2) alterations is a sensitive tool for early diagnosis of Parkinson's disease. Our group has reported several novel 2-amino-DTBZ derivatives as potential VMAT2 imaging agents. The objective of this paper is to develop a non-radiolabeled methodology to screen the candidate compounds for accelerating the drug discovery process. 9-[(18)F]fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133) is a PET imaging agent targeting VMAT2 binding sites in the brain. Nonradioactive AV-133 was injected (iv) into rats, at the end of the allotted time, the animals were killed and six regions of brain and plasma from each animal were processed for quantitative measurement of AV-133 by LC-MS/MS. These data were converted to the percentage injected dose per gram tissue weight (%ID/g tissue) and the brain target tissue to background ratios to allow direct comparison with data obtained by gamma counting of the injected radioactive [(18)F]AV-133. The %ID/g and the brain target tissue to background ratios calculated using the LC-MS/MS method were highly correlated to the values obtained by standard radioactivity measurements of [(18)F]AV-133. The pattern of AV-133 in rat brain was consistent with the known distribution of VMAT2. The concordance indicated that high-sensitivity LC-MS/MS is an indispensable tool in evaluating the quantity of administered chemical in tissue as part of the development of new molecular imaging probes. Furthermore, several novel 2-amino-DTBZ derivatives were detected using this methodology, and their biodistribution data in rat brain were obtained. The information about target engagements of candidates was provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.