Abstract

ABSTRACT Reflected light photometry of terrestrial exoplanets could reveal the presence of oceans and continents, hence placing direct constraints on the current and long-term habitability of these worlds. Inferring the albedo map of a planet from its observed light curve is challenging because different maps may yield indistinguishable light curves. This degeneracy is aggravated by changing clouds. It has previously been suggested that disc-integrated photometry spanning multiple days could be combined to obtain a cloud-free surface map of an exoplanet. We demonstrate this technique as part of a Bayesian retrieval by simultaneously fitting for the fixed surface map of a planet and the time-variable overlying clouds. We test this approach on synthetic data and then apply it to real disc-integrated observations of the Earth. We find that 8 d of continuous synthetic observations are sufficient to reconstruct a faithful low-resolution surface albedo map, without needing to make assumptions about cloud physics. For light curves with negligible photometric uncertainties, the minimal top-of-atmosphere albedo at a location is a good estimate of its surface albedo. When applied to observations from the Earth Polychromating Imaging Camera aboard the Deep Space Climate Observatory spacecraft, our approach removes only a small fraction of clouds. We attribute this difficulty to the full-phase geometry of observations combined with the short correlation length for Earth clouds. For exoplanets with Earth-like climatology, it may be hard to do much better than a cloud-averaged map. We surmise that cloud removal will be most successful for exoplanets imaged near quarter phase that harbour large cloud systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.