Abstract

ABSTRACTWe use electron energy-loss spectroscopy (EELS) in the cryo-STEM to determine the spatial distribution of water in a model frozen-hydrated two-phase polymer blend composed of hydrophilic poly(vinylpyrrolidone) (PVP) and hydrophobic poly(styrene) (PS). We demonstrate that it is possible to directly correlate the water spatial distribution with variations in the underlying polymer morphology. HAADF-STEM imaging of both dry and frozen-hydrated specimens shows weak contrast between the polymer phases but gives no information regarding the composition of these phases and no indication of where water might be localized. Spatially-resolved EELS spectra collected at 100 nm pixel size show that this system is composed of discrete PVP-rich domains dispersed in a continuous PS-rich matrix. The PVP-rich domains were found to be hydrated up to a level of ∼ 23 wt%. We have made our compositional maps fully quantitative, given as mass-fraction maps, by measuring the total inelastic scattering cross-sections per unit mass of water, PVP and PS. This is an important quantity which we have determined for an incident beam energy of 200 keV. Hydrated PVP gives rise to hydrogen evolution when irradiated above an electron dose of 1500 e/nm2 as evidenced from changes in the 13 eV region, and this effect gives rise to dose-limited resolution in these experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call