Abstract

Large amounts of antibiotics have been discharged into wastewater during the COVID-19 pandemic due to overuse and misuse of antibiotics to treat patients. Wastewater-based surveillance can be used as an early warning for antibiotic resistance (AR) emergence. The present study analyzed municipal wastewater corresponding to the major pandemic waves (WW1, WW2, and WW3) in India along with hospital wastewater (Ho) taken as a benchmark for AR. Commonly prescribed antibiotics during a pandemic, azithromycin and cefixime residues, were found in the range of 2.1-2.6 μg/L in Ho and WW2. Total residual antibiotic concentration was less in WW2; however, the total antibiotic resistance gene (ARG) count was 1065.6 ppm compared to 85.2 ppm in Ho. Metagenome and RT-qPCR analysis indicated a positive correlation between antibiotics and non-corresponding ARGs (blaOXA, aadA, cat, aph3, and ere), where 7.2-7.5% was carried by plasmid in the bacterial community of WW1 and WW2. Moreover, as the abundance of the dfrA and int1 genes varied most among municipal wastewater, they can be suggested as AR markers for the pandemic. The common pathogens Streptococcus, Escherichia, Shigella, and Aeromonas were putative ARG hosts in metagenome-assembled genomes. The ARG profile and antibiotic levels varied between municipal wastewaters but were fairly similar for WW2 and Ho, suggesting the impact of the pandemic in shaping the resistome pattern. The study provides insights into the resistome dynamic, AR markers, and host-ARG association in wastewater during the COVID-19 surge. Continued surveillance and identification of intervention points for AR beyond the pandemic are essential to curbing the environmental spread of ARGs in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call