Abstract
Atmospheric dust has many negative impacts within different ecosystems and it is therefore beneficial to assemble reliable evidence on the key sources of the dust problem. In this study, for first time, two different source modelling approaches comprising generalized likelihood uncertainty estimation (GLUE) and Monte Carlo simulation were applied to map spatial source contributions to atmospheric dust samples collected in Ahvaz, Khuzestan province, Iran. A total of 264 surficial soil samples were collected from five potential spatial dust sources. Additionally, nine dust samples were collected in February 2015. The performance of both GLUE and Monte Carlo simulation for quantifying uncertainty associated with the source contributions predicted using an un-mixing model were assessed and compared using mean absolute fit (MAF) and goodness-of-fit (GOF) estimators as well as 14 virtual sediment mixtures (VSM). Finally, the erodible fraction (EF) of topsoils and HYSPLIT model were used as further tests for validating the results of the GLUE and Monte Caro simulation. Based on both uncertainty modelling approaches, the loamy sand soil texture was recognized as the main spatial source of the target dust samples. Silty clay soils were estimated to be the least important spatial source of the target dust samples using the two modelling approaches. Both GLUE and Monte Carlo simulation returned MAF and GOF estimates >80%, with Monte Carlo performing slightly better. Based on the virtual mixture tests, the RMSE and MAE of the Monte Carlo simulation (<13.5% and <11%, respectively) was better than for GLUE (<20% and <16.3%, respectively). Spatial source maps generated using both GLUE and Monte Carlo simulation were consistent with the EF map generated using multiple regression (MR) and with routes dust transportation detected by HYSPLIT. Therefore, we recommend that future research into to the sources of atmospheric dust pollution integrates modelling approaches, VSM, EF and HYSPLIT model to quantify and map dust provenance reliably.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.